
9 Numerical Solutions of 

Ordinary Differential Equations

1



9.1 Classification of ODEs (Recall)

2

▪ An ordinary differential equation (ODE) is a differential equation where the dependent variable or
variables depend on only one independent variable (usually time or space).

▪ Order of an ODE refers to the highest derivative or equivalently, to the number of simultaneous equations.

▪ ODEs can be classifed by the order of the equation as well as whether the system is linear or nonlinear.

▪ An equation of the form
𝑑𝜃

𝑑𝑡
=f(t, 𝜃) is non-autonomous, while

𝑑𝜃

𝑑𝑡
=f(𝜃) is autonomous.



9.1 Initial Value and Boundary Value Problems (Recall)

3

If all the conditions are specifed at the
same value of the independent variable,
then we have an initial value problem.

If conditions are known at different
locations of the independent variable, then
we have a boundary value problem



9.2 Taylor’s Series Method

4

▪ Determine y(0.2) with the fourth-order Taylor series method

Also compute the estimated error and compare it with the actual error. The analytical solution of the 
differential equation is

%Exact Solution
syms y(x)
eqn = diff(y,x) == x^2-4*y;
cond = y(0) == 1;
S = dsolve(eqn,cond)

S =

(31*exp(-4*x))/32 - x/8 + x^2/4 + 1/32



9.2 Taylor’s Series Method

5



9.2 Taylor’s Series Method

6

% Exact Solution
syms y(x) a b
eqn = diff(y,x) == -4*y+x^2;
cond = [y(0)==a];
ySol(x) = dsolve(eqn,cond)
vpa(subs(ySol(x),[a,x],[1,0.2]),4)



9.3 Runge-Kutta Methods (First-Order: Euler’s Method)

7

▪ The aim of Runge–Kutta methods is to eliminate the need for repeated differentiation of the 
differential equations.

▪ Since no such differentiation is involved in the first-order Taylor series integration formula

it can be considered as the first-order Runge–Kutta method; it is also called Euler’s method.



8

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 If y(0)=1, Find y(1)

https://planetcalc.com/8389/?dydx=x%2By&x0=0&y0=1
&h=0.1&x=1&yexact=2*e%5Ex-x-1

9.3 Runge-Kutta Methods (First-Order: Euler’s Method)

https://planetcalc.com/8389/?dydx=x%2By&x0=0&y0=1&h=0.1&x=1&yexact=2*e^x-x-1


9

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 If y(0)=1, Find y(1)

% Define Function
function dydx=func(x,y)
dydx=x+y;
end

function E=euler_ode(a,b,ya,N)
h=(b-a)/N;
x(1)=a;
y(1)=ya;
for i=1:N
x(i+1)=x(i)+h;
y(i+1)=y(i)+h*func(x(i),y(i));
end
E=y(i+1);
end

9.3 Runge-Kutta Methods (First-Order: Euler’s Method)

%Housekeeping
clear; clc; close all;

%Exact Solution
syms y(x)
eqn = diff(y,x) == x+y;
cond = y(0) == 1;
S = dsolve(eqn,cond)

%Eulers Method (First Order)
a=0;b=1;ya=1;N=10;
euler_ode(a,b,ya,N)



9.3 Runge-Kutta Methods (Second-Order): Heun’s Predictor-Corrector Method

10



11

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 If y(0)=1, Find y(1) % Define Function

function dydx=func(x,y)
dydx=x+y;
end

function E=heun_ode(a,b,ya,N)
h=(b-a)/N;
x(1)=a;
y(1)=ya;
for i=1:N
k1=func(x(i),y(i));
k2=func(x(i)+h,y(i)+h*k1);
x(i+1)=x(i)+h;
y(i+1)=y(i)+0.5*h*(k1+k2);
end
E=y(i+1);
end

%Housekeeping
clear; clc; close all;

%Exact Solution
syms y(x)
eqn = diff(y,x) == x+y;
cond = y(0) == 1;
S = dsolve(eqn,cond)

%Heun's Method (Second Order: Predictor Corrector)
a=0;b=1;ya=1;N=10;
heun_ode(a,b,ya,N)

9.3 Runge-Kutta Methods (Second-Order): Heun’s Predictor-Corrector Method



12

9.3 Runge-Kutta Methods (2nd Order: Midpoint method)

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 If y(0)=1, Find y(1)



13

9.3 Runge-Kutta Methods (2nd Order: Ralston’s method)

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 If y(0)=1, Find y(1)



14

9.3 Runge-Kutta Methods (3rd Order)

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 If y(0)=1, Find y(1)



15

9.3 Runge-Kutta Methods (4th Order)

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 If y(0)=1, Find y(1)



16

9.3 Runge-Kutta Methods (4th Order)

function [xSol,ySol] = runKut4(dEqs,x,y,xStop,h)
% 4th-order Runge--Kutta integration.
% USAGE: [xSol,ySol] = runKut4(dEqs,x,y,xStop,h)
% INPUT:
% dEqs = handle of function that specifies the
% 1st-order differential equations
% F(x,y) = [dy1/dx dy2/dx dy2/dx ...].
% x,y = initial values; y must be row vector.
% xStop = terminal value of x.
% h = increment of x used in integration.
% OUTPUT:
% xSol = x-values at which solution is computed.
% ySol = values of y corresponding to the x-values.

if size(y,1) > 1 ; y = y'; end % y must be row vector
xSol = zeros(2,1); ySol = zeros(2,length(y));
xSol(1) = x; ySol(1,:) = y;
i = 1;
while x < xStop
i = i + 1;
h = min(h,xStop - x);
K1 = h*feval(dEqs,x,y);
K2 = h*feval(dEqs,x + h/2,y + K1/2);
K3 = h*feval(dEqs,x + h/2,y + K2/2);
K4 = h*feval(dEqs,x+h,y + K3);
y = y + (K1 + 2*K2 + 2*K3 + K4)/6;
x = x + h;
xSol(i) = x; ySol(i,:) = y; % Store current soln.
end% House Keeping

clear; clc; close all;
[x,y] = runKut4(@fn,0,1,1,0.05);
printSol(x,y,0)

function F = fn(x,y)
F=x+y;
end



17

9.3 Runge-Kutta Methods (MATLAB built-in)
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, y(0)=1, y(1)=3.4366 (exact)

% House Keeping
clear; clc; close all;
[x, y] = ode45(@fn,[0:0.2:1],1)

function F = fn(x,y)
F=x+y;
end



18

9.3 Runge-Kutta Methods (Higher-Order)

Method y(1)

Euler 3.1875

Heun 3.4282

Midpoint 3.4282

Ralson 3.3468

3rd Order 3.4364

4th Order 3.4366

ode45 3.4366

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, y(0)=1, y(1)=3.4366 (exact)



19

9.4 State Space Form (Higher Order DEs)



20

9.4 State Space Form (Higher Order DEs)



21

9.4 State Space Form (Higher Order DEs)



22

9.4 Higher order ODES: Runge-Kutta Methods (4th Order)

Solve:

𝑦′′ = −0.1𝑦′ − 𝑥

y(0)=1 & y’(0)=1

from x = 0 to 2 in increments of h = 0.25 with the fourth-order Runge–Kutta method

% House Keeping
clear; clc; close all;
[x,y]=runKut4(@fn,0,[1 1],2,0.25);
printSol(x,y,1)

function F = fn(x,y)
F = zeros(1,2);
F(1) = y(2); F(2) = -0.1*y(2) - x;
end



23

9.4 Higher order ODES: MATLAB built-in

Solve:

𝑦′′ = −0.1𝑦′ − 𝑥

y(0)=1 & y’(0)=1

from x = 0 to 2 using ode45 built-in MATLAB function

% House Keeping
clear; clc; close all;
[x, y] = ode45(@fn,[0:0.25:2],[1; 1])

function F = fn(x,y)
F = zeros(2,1);
F(1) = y(2); F(2) = -0.1*y(2) - x;
end



24

9.4 Example
% House Keeping
clear; clc; close all;

% Define known quantities
g=9.80665;
CD=0.03;
m=0.25;

% Specify the initial conditions and time span
y0=[0;50*cosd(30);0;50*sind(30)];
tspan=[0:0.2:8];

% Call ode45
[t,y] = ode45(@(t,y) fn(t,y,g,CD,m), tspan, y0);

% Find the flight time and range using spline interpolation and root
% solving
f1=spline(t,y(:,3));
flight_time = unique(fnzeros(f1))
f2=spline(y(:,1),y(:,3));
range = max(unique(fnzeros(f2)))

% Define function
function F = fn(t,x,g,CD,m)
F = zeros(4,1);
F(1) = x(2);
F(2) = -(CD/m)*x(2)*(x(2)^2+x(4)^2)^0.25;
F(3) = x(4);
F(4) = -(CD/m)*x(4)*(x(2)^2+x(4)^2)^0.25-g;
end



25

9.5 Implicit versus Explicit Schemes

▪ The Euler scheme and other versions of the Runge–Kutta method are plagued by stability problems—that

is, for a time step that is too large, nonphysical oscillations occur in the solutions. The implicit method is

often used to avoid these problems.

▪ Euler’s scheme:

▪ Implicit scheme:



References

26

▪ Applied Engineering Mathematics, Brian Vick, CRC Press, 2020

▪ Numerical Methods in Engineering with MATLAB, Jaan Klusalaas, Cambridge University Press, 2012


